
Address Book Programming Guide

2006-04-04



Apple Inc.
© 2002, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval system, or
transmitted, in any form or by any means,
mechanical, electronic, photocopying,
recording, or otherwise, without prior
written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a
single computer for personal use only and
to print copies of documentation for
personal use provided that the
documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple
may constitute trademark infringement and
unfair competition in violation of federal
and state laws.

No licenses, express or implied, are granted
with respect to any of the technology
described in this document. Apple retains
all intellectual property rights associated
with the technology described in this
document. This document is intended to
assist application developers to develop
applications only for Apple-labeled or
Apple-licensed computers.

Every effort has been made to ensure that
the information in this document is
accurate. Apple is not responsible for
typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a service mark of Apple Inc.

Apple, the Apple logo, Carbon, Cocoa, Mac,
Mac OS, Objective-C, QuickTime, and Xcode
are trademarks of Apple Inc., registered in
the United States and other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United
States and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS
DOCUMENT IS PROVIDED “AS IS,” AND
YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if
advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple dealer, agent,
or employee is authorized to make any
modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability for
incidental or consequential damages, so the
above limitation or exclusion may not apply to
you. This warranty gives you specific legal
rights, and you may also have other rights which
vary from state to state.



Contents

Address Book Programming Guide 7

Who Should Read This Document ? 7
Organization of This Document 7

About the Address Book 9

Basic Address Book Concepts 9
Advanced Address Book Concepts 10

Managing Address Book Records 11

Accessing the Address Book 11
Adding and Removing People and Groups 11
Managing Groups 11
Accessing the User’s Record 12
Saving Your Changes 12
An Example 12

Accessing Address Book Records 13

Using Property Lists 13
Using Multivalue Lists 14
Associating a Picture With a Person 14
Getting Localized Names for Properties and Labels 15
An Example 15
Using the People Picker 15
People Picker Example 16

Searching an Address Book 19

Creating a Search Element for a Single Property 19
Creating a Search Element for Multiple Properties 20
Finding Records that Match a Search Element 20
Search Examples 20

3
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.



Using Address Book Groups as Distribution Lists 23

Adding Properties to Address Book Records 25

Creating and Using Address Book Action Plug-ins 27

Importing and Exporting Address Book People and Groups 29

Using Address Book from C 31

Document Revision History 33

4
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.



Tables and Listings

Accessing Address Book Records 13

Table 1 Documentation list for property list constants 13
Listing 1 Changing a Person’s Address, in Objective-C 15

Searching an Address Book 19

Listing 1 Simple Search 20
Listing 2 Complex Search 20

Creating and Using Address Book Action Plug-ins 27

Table 1 Action Methods for an Address Book action plug-in 27

Using Address Book from C 31

Listing 1 Simple Search, in Objective-C 32
Listing 2 Simple Search, in C 32

5
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.



6
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.



The Address Book is a centralized database for contact and other personal information for people.
Applications that support the Address Book framework share this contact information with other
applications, including Mail and iChat. Both Carbon and Cocoa applications can access users’ address
books. This topic covers key Address Book framework concepts and some operations you can perform
with address books.

Important: If your application uses the Sync Services and Address Book frameworks together, then
you should not use Sync Services to sync data shared with the Address Book Framework. The Address
Book Framework already syncs its records with Sync Services, so applications sharing the Address
Book data do not have to (and should not) sync those records. The results are unpredictable and may
result in data loss, if you attempt to sync the same data as the Address Book Framework.

The Address Book framework consists of two APIs: one for C, the other for Objective-C. While both
API are equally functional, the majority of the code samples in this document are printed in Objective-C
only. Where it is appropriate, this document will address fundamental differences between the two
API, but will not list sample code in both languages. Both API are similar in syntax and conventions,
and mapping the Objective-C sample code to its C counterpart can be done easily using the Address
Book Reference for C. Developers using the C API should also refer to "Using Address Book from
C" (page 31).

Who Should Read This Document ?

This topic is designed for any Cocoa or Carbon developer who wants to leverage the abilities of the
Mac OS X Address Book in their application. You will not only be able to access a user’s address book
data, but also design and implement your own properties and actions for the data.

It is expected that you are already familiar with Xcode and the basics of either Cocoa or Carbon
development.

Organization of This Document

The topic contains the following articles:

Who Should Read This Document ? 7
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Address Book Programming Guide



 ■ "About the Address Book" (page 9) describes what’s in the Address Book database and what
you can do with it.

 ■ "Managing Address Book Records " (page 11) describes how to add and remove people and
groups, how to arrange people into groups, and how to find the record for the logged-in user.

 ■ "Accessing Address Book Records" (page 13) describes how to access data in a person or group
record.

 ■ "Searching an Address Book" (page 19) describes how to perform searches on a user’s address
book.

 ■ "Using Address Book Groups as Distribution Lists" (page 23) describes how to set up a group so
you can use it as a mailing list, or other type of distribution list.

 ■ "Adding Properties to Address Book Records" (page 25) describes how to customize an address
book for your own applications by adding properties to it.

 ■ "Creating and Using Address Book Action Plug-ins" (page 27) describes how to create action
plug-ins which allow users to perform custom actions on address book data viewed within the
Address Book application.

 ■ "Importing and Exporting Address Book People and Groups" (page 29) describes how to import
and export person records by using the vCard standard.

 ■ "Using Address Book from C" (page 31) contains special information for those using the Address
Book C API.

8 Organization of This Document
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Address Book Programming Guide



The Address Book is a centralized database for contact and other personal information for people.
Users need to enter personal information about themselves and their friends only once instead of
entering it repeatedly whenever the information is used. Applications that support the Address Book
framework share this contact information with other applications, including Apple’s Mail and iChat.
Both Carbon and Cocoa applications can access it.

This database contains people’s names, street addresses, email addresses, phone numbers, home
pages, and more. Your applications can use this data as it is or extend it to include information specific
to your applications. Every user on the computer has one and only one address book. Every application
shares the address book for the currently logged-in user.

Basic Address Book Concepts

This section details the basic information that every developer using the Address Book and its
associated API should know. It will help you get started with the remainder of the content in this
document.

The Address Book contains two fundamental sorts of records, and they are what you would expect
of an address book: ABPerson, for individuals, and ABGroup, for groups. Both are subclasses of the
same root class ABRecord, and they can be used interchangeably in some places.

An ABPerson record contains such properties as the person’s name, company, addresses, email
addresses, phone numbers, instant messaging IDs, and a comments field.

An ABGroup object can contain any number of people and other groups. For example, let’s say you
are the CEO of two companies, Acme Co. and Ajax Inc. You logically would have an Acme employees
group and an Ajax employees group, containing both companies’ respective employees (in the form
of ABPerson records). You could then set up a Professional group that includes the Acme group, the
Ajax group, and some additional people who aren’t in either group. A person can be in any number
of groups.

Each group and person has a unique identifier that’s set when the record is created. It’s guaranteed
never to change even if a user changes the group’s or person’s name or other information. Use this
identifier if your application needs to store a reference to a group or person.

The groups and people are stored in an extensible form. As such, you can add custom properties to
Address Book records that other applications will ignore, without worrying about data corruption
or usability issues.

Basic Address Book Concepts 9
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

About the Address Book



Some of these properties can contain multiple values. For example, a person can have any number
of street addresses, phone numbers, and email addresses. A user can also specify that one of those
multiple values is the primary value. For example, a user can specify that email be sent to one person’s
work address and another person’s home address unless otherwise specified. For any such property
that contains multiple values, the Address Book framework uses the ABMultiValue class. For more
information, see "Using Multivalue Lists" (page 14) in "About the Address Book" (page 9).

Searching the address book of a user, of course, is vitally important. Address Book manages individual
search queries using an ABSearchElement object, instances of which can be created using class methods
of ABGroup and ABPerson. See "Searching an Address Book" (page 19) for a detailed look at searching
Address Book records. This does have one important implication—since the ABSearchElement objects
are created using ABPerson and ABGroup, a custom subclass of ABRecord will not contain the required
methods to create such an object. For this reason, Apple advises against creating subclasses of
ABRecord.

Advanced Address Book Concepts

This section explains some of the advanced features of Address Book, but may not be relevant to
some developers.

The Address Book framework provides transparent record locking. If two applications try to change
the same record simultaneously, the application that tried to change it last will succeed. The database
will not be corrupted.

The Address Book does not provide any security above what’s provided by Mac OS X. Anyone who
has read and write access to a user’s home folder can also read and write that user’s address book.
For that reason, the Address Book may not be an appropriate place to store confidential information,
such as credit card numbers.

The Address Book API provides localized versions of the built-in property names and labels. If you
add properties or labels, you must provide your own way for localizing them.

10 Advanced Address Book Concepts
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

About the Address Book



You can manage the people and groups within a user’s Address Book. This document explains how
get the user’s address book, add and remove people and groups from that address book, manage
groups, find the record that corresponds to the logged-in user, and save your changes.

Accessing the Address Book

To get the address book for the currently logged-in user, use the ABAddressBook method
sharedAddressBook. If you call these procedures more than once or try to create a new address book,
you get a pointer to the shared address book.

Adding and Removing People and Groups

Adding a new person or group takes two steps: creating the appropriate record and then adding it
to the user’s address book.

First, create the person or group. You must allocate and initialize the respective ABPerson or ABGroup
object.

Second, add the person or group to the Address Book using the ABAddressBook method addRecord:.

To remove a person or group, use the ABAddressBook method removeRecord:.

Managing Groups

The Address Book lets you add people and subgroups to groups, as well as find out all groups that
a person or subgroup is in.

To add and remove people from a group, use the methods addMember: and removeMember:. To get
a list of all the groups a person is in, use the method parentGroups.

Accessing the Address Book 11
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Managing Address Book Records



You can also add groups to a group. For example, a user could have a group called “Pet Lovers” that
contains the groups “Dog Lovers” and “Cat Lovers.” To add and remove groups from another group,
use the methods addSubgroup: and removeSubgroup:. The Address Book will not let you create a
circular dependency. For example, if “Dog Lovers” is a subgroup of “Pet Lovers,” then “Pet Lovers”
cannot be a subgroup of “Dog Lovers.” To get a list of all groups that another group is a subgroup
of, use the method parentGroups.

To get lists of what’s in a group, use the methods members and subgroups or the functions
ABGroupCopyArrayOfAllMembers and ABGroupCopyArrayOfAllSubgroups.

Accessing the User’s Record

The user can specify a record that contains information about himself or herself. That lets your
application find the name, address, or phone number of the logged-in user, so you can use it when
filling out forms, for example. To get the logged-in user’s record, use the ABAddressBook method
me. To set the logged-in user’s record, use the ABAddressBook method setMe:.

Saving Your Changes

When you modify the Address Book database, those changes are made in memory, and not to the
database itself. Unless you save those changes, they will be lost.

To save your changes to the address book, use the ABAddressBook method save. To test whether
there are unsaved changes to the address book, use the ABAddressBook method hasUnsavedChanges.

An Example

This brief Objective-C example adds a person named John Doe to the current user’s address book.
Take note of how the code accesses the shared address book and how it allocates a new ABPerson
object. Also note the properties used (in this case, just our subject’s first name and last), and the final
save, which sends the changes to the address book:

ABAddressBook *addressBook;
ABPerson *newPerson;

addressBook = [ABAddressBook sharedAddressBook];

newPerson = [[[ABPerson alloc] init] autorelease];

[newPerson setValue:@"John"
forProperty:kABFirstNameProperty];

[newPerson setValue:@"Doe"
forProperty:kABLastNameProperty];

[addressBook addRecord:newPerson];
[addressBook save];

12 Accessing the User’s Record
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Managing Address Book Records



Once you have a record, you can retrieve the data within it. This article shows you how the data is
organized and how to access it. It shows how to access properties from a records property list, how
to handle properties that can have more than one value (such as addresses and phone numbers), how
to get localized names for properties and labels, and how to associate a picture with a person.

Using Property Lists

Both groups and people store their data in property lists. This lets your application add properties
to the Address Book records that other applications will ignore. See "Adding Properties to Address
Book Records" (page 25).

To get data from them, such as a group’s description or a person’s first name, use the method
valueForProperty: method or the C function ABRecordCopyValue. For example, to get the first
name for aPerson, use

[aPerson valueForProperty:kABFirstNameProperty];

To set data, use the setValue:forProperty: method. For example, to set the name of dataGroup,
use

[aGroup setValue:@"Book Club" forProperty:kABGroupNameProperty];

To find out the names of the properties for ABPerson and ABGroup, refer to the following
documentation list:

Table 1 Documentation list for property list constants

LanguageClassDocumentation

Objective-CABGroupConstants

Objective-CABPersonConstants

Procedural CABGroupConstants

Procedural CABPersonConstants

Other properties can be found in ABGlobals.h for Objective-C or ABGlobalsC.h for procedural C.

Using Property Lists 13
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Accessing Address Book Records



Using Multivalue Lists

Many properties can have multiple values. For example, a person can have several addresses, including
work, home, summer home, and mailing addresses. These properties are stored as multivalue lists,
of type ABMultiValue or ABMultiValueRef. Each item in a multivalue list has a numeric index, a
unique identifier, a string label (such as "Home" or "Work"), and a value. Every value in the multivalue
list must be of the same type. The label does not need to be unique; after all, someone could have
more than one home or work address. You access the items with the numeric index. To add an item
to a multivalue list, use the method addValue:withLabel:. To retrieve an item, use the methods
valueAtIndex: and labelAtIndex:.

If you want to save a reference to a specific value, use the unique identifier. The numeric index may
change as the user adds and removes values, but the identifier is guaranteed never to change. To get
the unique identifier for a value at a particular index, use the method identifierAtIndex:. To get
the index for a identifier, use the method indexForIdentifier:.

Each multivalue list also has a primary value, which is the item the user most strongly associates with
that person. For example, friends may have both home and work addresses, but the home address is
their primary address. And coworkers may have both home and work phone numbers, but the work
number is their primary number. To get the identifier for a multivalue list’s primary value, use the
method primaryIdentifier. To set the multivalue list’s primate value, use the method
setPrimaryIdentifier:.

Associating a Picture With a Person

You can associate a picture that identifies a person in your Address Book database. Because these
pictures are not stored in the same way as the other Address Book, you need to use different methods
to access them.

To associate a TIFF to a person, use the method setImageData: or the function ABPersonSetImageData.
To get the TIFF data for person’s image, use the method imageData. Note that both NSImage and
QuickTime have functions for converting the data into a TIFF file.

Images are located by Address Book through a specific search heirarchy, in this order:

1. Check for an image set specifically by the user.

2. Check Directory Services for the local user’s login picture.

3. Check for an image in /Network/Library/Images/People/email, where email is the user’s primary
e-mail address.

4. Check for an image from the user’s .Mac account, first against the cache at
~/Library/Caches/com.apple.AddressBook/email and then against the .Mac servers.

14 Using Multivalue Lists
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Accessing Address Book Records



Getting Localized Names for Properties and Labels

You can find the localized name for any of the property names and labels that are in the header files
ABGlobals.h and ABGlobalsC.h. In C, the function ABCopyLocalizedPropertyOrLabel returned a
name that’s localized for the user’s selected language.

If you want to localize names for the properties and labels that you create, you must handle it yourself.
The Address Book framework does not have support for this.

An Example

Listing 1 (page 15) is an Objective-C code sample that retrieves the country for the primary address
of the logged-in user. If the country is a null string, it sets the country to USA.

Listing 1 Changing a Person’s Address, in Objective-C

ABPerson *aPerson = [[ABAddressBook sharedAddressBook] me];
ABMutableMultiValue *anAddressList =

[[aPerson valueForProperty:kABAddressProperty] mutableCopy];
int primaryIndex =

[anAddressList indexForIdentifier:[anAddressList primaryIdentifier]];
NSMutableDictionary *anAddress =

[[anAddressList valueAtIndex:primaryIndex] mutableCopy];
NSString *country =

(NSString*) [anAddress objectForKey:kABAddressCountryKey];
if ([country isEqualToString:@""]) {

[anAddress setObject:@"USA" forKey:kABAddressCountryKey];
[anAddressList replaceValueAtIndex:primaryIndex withValue:anAddress];
[aPerson setValue:anAddressList forProperty:kABAddressProperty];
[[ABAddressBook sharedAddressBook] save];

}

Using the People Picker

The People Picker is a portion of the Address Book API that provides easy and quick access to the
contents of a user’s address book from any application. It offers a searchable, selectable list of people
and groups that can be customized for your application.

Important: The People Picker was introduced in Mac OS X version 10.3 and is only available to
applications on systems running that version or later.

There are two ways to integrate the People Picker into a Cocoa application. The first is to use Interface
Builder and the Address Book palette. The palette is not included in the standard list of Interface
Builder palettes. To add it, click the Palettes tab in Xcode’s Preferences, click the Add button, and
select ABPalette.palette, located at /Developer/Extras/Palettes/ABPalette.palette.

Getting Localized Names for Properties and Labels 15
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Accessing Address Book Records



You can drag the ABPeoplePickerView from the AB palette to your window, and use the Interface
Builder Info window to set many of the attributes of the People Picker view. These include the columns
the view should display, whether or not multiple selections are allowed, whether or not group
selections are allowed, and the autosave name for the view. These changes are reflected immediately,
even within Interface Builder. Using the Test Interface feature of Interface Builder, a People Picker
view will display the address book of the logged-in user.

The other method is to create and modify the People Picker view programmatically. To do so, you
must design the enclosing window yourself with the People Picker view and make the appropriate
connections to your controller class in the nib file. The most basic People Picker window needs a
custom view object. This custom view should be set to a custom class of ABPeoplePickerView. This
will require you to include AddressBook.h and AddressBookUI.h in your controller, make a subclass
of NSView called ABPeoplePickerView, and create an outlet of that type from your controller to the
custom view.

With just this People Picker view connected and no other code inserted, you get a working view of
the Address Book, displaying the current user’s groups and people, as well as a search bar to narrow
the results.

The People Picker API provides a host of methods and functions to access the address book data, to
change the layout and construction of the People Picker view, and even to activate the Address Book
application to perform tasks such as editing records.

It should be noted that the Carbon People Picker is only available in a window form and cannot be
used as a custom HIView. It must be created as an ABPickerRef with ABPickerCreate() and made
visible with ABPickerSetVisibility(). The code would look like this:

ABPickerRef peoplePicker = ABPickerCreate();
ABPickerSetVisibility(peoplePicker, TRUE);

For Cocoa applications, the People Picker also provides methods for using autosave data, so that it
can retain the filter selections and column positions. See the documentation on autosaveName: and
setAutosaveName:.

People Picker Example

This example would be placed in the window controller for the People Picker. Carbon developers
should refer to theAddress Book Reference for C to construct the analogue for their applications. Most
of the functions are named similarly. In lieu of notifications, you will need to register event handlers
to handle changes to the window.

This sample incorporates the fundamentals of using the People Picker. It assumes you have created
a window in your nib file with an ABPeoplePickerView object, a NSTextField outlet called
nameFieldLabel, and a NSImageView outlet called personImage.

#import "PickerController.h"
@implementation PickerController
- (void)awakeFromNib
{

NSNotificationCenter* center;
center = [NSNotificationCenter defaultCenter];

//Here we set up a responder for one of the four notifications,

16 People Picker Example
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Accessing Address Book Records



//in this case to tell us when the selection in the name list
//has changed.
[center addObserver:self

selector:@selector(recordChange:)
name:ABPeoplePickerNameSelectionDidChangeNotification
object:peoplePicker];

//Here we disallow multiple selections in the name list
[peoplePicker setAllowsMultipleSelection:NO];

//Here we add the e-mail and telephone properties to the
//view. By default, the People Picker displays only the
//Name column.
[peoplePicker addProperty:kABEmailProperty];
[peoplePicker addProperty:kABPhoneProperty];

}

//This is the responder for the notification we registered for
- (void)recordChange:(NSNotification*)notif {

NSImage *personImage;
NSString *personName;
NSArray *array;

array = [peoplePicker selectedRecords];
ABPerson *person = [array objectAtIndex:0];
personImage = [[NSImage alloc] initWithData:[person imageData]];
personName = [NSString stringWithFormat:@"%@ %@",

[person valueForProperty:kABFirstNameProperty],
[person valueForProperty:kABLastNameProperty]];

[imageView setImage:personImage];
[nameField setStringValue:personName];

[personImage release];
}

@end

People Picker Example 17
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Accessing Address Book Records



18 People Picker Example
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Accessing Address Book Records



You can quickly search a user’s address book, using arbitrarily complex criteria. The address book is
fully indexed, automatically. And the Address Book framework’s searching features let you easily
create complex searches. For example, you can search for all people named “Smith,” or for all people
who work at Acme and live in San Francisco, or who work at Ajax and live in Seattle.

Here’s how you create a search query. For each property you want to search on, create a search
element. If you want to search on multiple properties, combine the search elements together with
Boolean operators to create a complex search element. Then search the Address Book with that simple
or complex search element.

Creating a Search Element for a Single Property

To create a search element for a person, use the ABPerson class method
searchElementForProperty:label:key:value:comparison:. To create a search element for a
group, use the ABGroup class method searchElementForProperty:label:key:value:comparison:.
These procedures take the following arguments:

 ■ property is the name of the property to search on, such as kABAddressProperty or
kABLastNameProperty. It cannot be nil. For a full list of the properties, see ABGlobals.h.

 ■ label is the label name for a multivalue list, such as kABAdressHomeLabel, kABPhoneWorkLabel,
or a user-specified label, such as "Summer Home". If the specified property does not have multiple
values, pass nil. If the specified property does have multiple values, pass nil to search all the
values.

 ■ key is the key name for a dictionary, such as kABAddressCityKey or kABAddressStreetKey. If
the specified property is not a dictionary, pass nil. If the specified property is a dictionary, pass
nil to search all keys.

 ■ value is what you’re searching for. It cannot be nil.

 ■ comparison specifies the type of comparison to perform. You can choose

 ❏ To search for elements that are equal or not equal to the value, use kABEqual, kABNotEqual,
or kABEqualCaseInsensitive

 ❏ To search for elements that are less than or greater than the value, use kABLessThan,
kABLessThanOrEqual, kABGreaterThan, or kABGreaterThanOrEqual.

Creating a Search Element for a Single Property 19
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Searching an Address Book



 ❏ To search for elements kABContainsSubString, kABContainsSubStringCaseInsensitive,
kABPrefixMatch, or kABPrefixMatchCaseInsensitive.

Creating a Search Element for Multiple Properties

To combine search elements, use the ABSearchElement class method
searchElementForConjunction:children:. These procedures take two arguments:

 ■ conjunctionOperator describes how to combine the search elements. It can be kABSearchAnd
or kABSearchOr.

 ■ children is an NSArray of search elements. The search elements can be a simple elements that
specifies only one property, or complex elements that specifies several. This lets you create
arbitrarily complex search elements. You cannot combine search elements for groups with search
elements for people.

Finding Records that Match a Search Element

To search the Address Book for records that match a search element, use the ABAddressBook method
recordsMatchingSearchElement:. These procedures return an NSArray of records.

Search Examples

Listing 1 shows a simple search. This code finds all the people whose last name is “Smith.”

Listing 1 Simple Search

ABAddressBook *AB = [ABAddressBook sharedAddressBook];
ABSearchElement *nameIsSmith =

[ABPerson searchElementForProperty:kABLastNameProperty
label:nil

key:nil
value:@"Smith"

comparison:kABEqualCaseInsensitive];
NSArray *peopleFound =

[AB recordsMatchingSearchElement:nameIsSmith];

Listing 2 shows a complex search. It searches for anyone who lives in San Francisco and works for
Acme, or for anyone who lives in Seattle and works for Ajax. Note that the addresses are searched
using the kABHomeLabel label—we only want to know if they live in the city we are searching, not if
they work in the same city.

Listing 2 Complex Search

ABAddressBook *AB = [ABAddressBook sharedAddressBook];

20 Creating a Search Element for Multiple Properties
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Searching an Address Book



ABSearchElement *inSF =
[ABPerson searchElementForProperty:kABAddressProperty

label:kABHomeLabel
key:kABAddressCityKey

value:@"San Francisco"
comparison:kABEqualCaseInsensitive];

ABSearchElement *atAcme =
[ABPerson searchElementForProperty:kABOrganizationProperty

label:nil
key:nil

value:@"Acme"
comparison:kABContainsSubStringCaseInsensitive];

ABSearchElement *inSeattle =
[ABPerson searchElementForProperty:kABAddressProperty

label:kABHomeLabel
key:kABAddressCityKey

value:@"Seattle"
comparison:kABEqualCaseInsensitive];

ABSearchElement *atAjax =
[ABPerson searchElementForProperty:kABOrganizationProperty

label:nil
key:nil

value:@"Ajax"
comparison:kABContainsSubStringCaseInsensitive];

ABSearchElement *inSFAndAtAcme =
[ABSearchElement searchElementForConjunction:kABSearchAnd

children:[NSArray arrayWithObjects:
inSF, atAcme, nil]];

ABSearchElement *inSeattleAndAtAjax =
[ABSearchElement searchElementForConjunction:kABSearchAnd

children:[NSArray arrayWithObjects:
inSeattle, atAjax, nil]];

ABSearchElement *inSFAndAtAcmeOrInSeattleAndAtAjax =
[ABSearchElement searchElementForConjunction:kABSearchOr

children:[NSArray arrayWithObjects:
inSFAndAtAcme, inSeattleAndAtAjax,

nil]];
NSArray *peopleFound =

[AB recordsMatchingSearchElement:inSFAndAtAcmeOrInSeattleAndAtAjax];

Search Examples 21
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Searching an Address Book



22 Search Examples
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Searching an Address Book



An Address Book group can be used as a distribution list. For example, a user can have a Christmas
Card group of all the people he or she mails Christmas cards to. Or a user can have a book club group
of all the people he or she emails book club announcements to. The Address Book framework provides
you with a special feature that helps you maintain distribution lists.

If a property has multiple values, like a street address or email address, it lets the user choose one as
the value that this group uses. Generally, the user will want to use the value he or she has already
marked as primary. But in some cases the user might want to make an exception. For example, for
coworkers, the user would want their work email addresses to be their primary email addresses. But
when the user notifies some of them about a book club that happens on the weekends, he or she
would want to send email to their home addresses. Each group can use a different value for each
person.

To choose the value in a multivalue list that a group uses, use the ABGroup method
setDistributionIdentifier:forProperty:person:. To get a group’s chosen value for a multivalue
list, use the ABGroup method distributionIdentifierForProperty:person:. These procedures
return the identifier for the value chosen for this group, or the identifier for the primary value if no
value is chosen for the group.

23
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Using Address Book Groups as
Distribution Lists



24
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Using Address Book Groups as Distribution Lists



You can add your own properties to the people and groups in the Address Book. For example, if
you’re creating a small application to manage a dog club, you could add properties to each person
that specify the name and breed of that person’s dog. Or if you’re creating an application to manage
business contacts, you could add a property that lists all the meetings and phone calls a user has had
with that person. These properties are stored in the Address Book database. Applications that don’t
know about the new properties aren’t affected by them and don’t modify them.

When deciding whether to add a property to the Address Book, keep these issues in mind:

 ■ Avoid properties for confidential information, such as credit card numbers. The Address Book
does not provide any security above what’s provided by Mac OS X. Anyone who has read and
write access to a user’s home folder can also read and write that user’s address book.

 ■ Avoid properties that are not useful for everyone in the address book. If you want to store
information for just the logged-in user, consider using the NSUserDefaults or CFPreference APIs.

 ■ Use a multivalue list if you think a person may have more than one of that property. Your new
multivalue list has the same capabilities as the other multivalue lists in the address book. The
user can choose a primary value in the list and can create distribution lists for it.

To add properties to every person or group, use the ABPerson or ABGroup class method
addPropertiesAndTypes:. These procedures take a NSDictionary or CFDictionary, in which the
keys are the names of the new properties and the values are their types. Note that the property names
must be unique. You may want to use Java-style package names for your properties, to make sure no
one else uses the same name; for example, "org.dogclub.dogname" or
"com.mycompany.meetinglist". The type can be one of five types or a multivalue list of one of those
types. Here are the types:

 ■ kABStringProperty or kABMultiStringProperty

 ■ kABIntegerProperty or kABMultiIntegerProperty

 ■ kABRealProperty or kABMultiRealProperty (a floating-point number)

 ■ kABDateProperty or kABMultiDateProperty (an NSDate)

 ■ kABArrayProperty or kABMultiArrayProperty (an NSArray)

 ■ kABDictionaryProperty or kABMultiDictionaryProperty (an NSDictionary)

 ■ kABDataProperty or kABMultiDataProperty (an NSData)

25
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Adding Properties to Address Book
Records



26
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Adding Properties to Address Book Records



A unique aspect of Address Book is its ability to act on data contained within a person's card. You
can install your own custom plug-ins to add additional actions to a given record. An example of an
existing action is the “Large Type” action, which works on any phone number entry. When selected
from its rollover menu, it displays the number in large type across the screen.

The action plug-in protocol, which must be followed for Address Book to recognize the plug-in, is
specified in ABActionDelegate. The plug-in must respond to three methods (actionProperty,
titleForPerson:identifier:, performActionForPerson:identifier:), and may optionally
respond to shouldEnableActionForPerson:identifier:. Note that Carbon applications must also
implement the ABActionRegisterCallbacks function. The following table describes the action
methods and functions, and what their purpose is in an Address Book action plug-in:

Table 1 Action Methods for an Address Book action plug-in

PurposeMethod

Performs the appropriate action for the
plug-in. Each plug-in supports only one
action.

(void)performActionForPerson:(ABPerson
*)person identifier:(NSString *)identifier

Returns the title of the menu item for the
action.

(NSString *)titleForPerson:(ABPerson *)person
identifier:(NSString *)identifier

Returns the ABProperty constant that the
action applies to.

(NSString *)actionProperty

Returns YES if the action is applicable and
NO otherwise.

(BOOL)shouldEnableActionForPerson:(ABPerson
*)person identifier:(NSString *)identifier

For a description of all the appropriate constants, refer to Address Book Reference for Objective-C.
In addition, see ABActionDelegate reference for a complete description of the methods above, including
how to leverage the method parameters to customize the plug-in’s action.

An example plug-in project is included with Xcode. Out of the box, it will compile into an action
plug-in designed to create a rollover menu item on any phone number. When the menu item is
selected, Address Book will speak the number using Mac OS X’s speech synthesis framework. To
view this project and review its code, create a new Address Book Action Plug-in from Xcode’s New
Project window. You will edit this pre-created template whenever you want to make a new plug-in.

27
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Creating and Using Address Book Action
Plug-ins



Once your project is complete, you may want to change the wrapper extension from .bundle to
something more appropriate, such as .plugin. This can be changed in the Styles pane of the project
Inspector, and is completely optional. Do that step or not, you can build your project. The completed
bundle should be placed in ~/Library/Address Book Plug-Ins (to only use it on your user account)
or in /Library/Address Book Plug-ins (to offer it to all users on the machine).

28
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Creating and Using Address Book Action Plug-ins



You can import and export people in the Address Book using the vCard format. To create a vCard
representation of a person, use the method vCardRepresentation. This method creates an NSData
structure that you can use in your program or save to a file.

To create a person from a vCard representation, use the method initWithVCardRepresentation:.

29
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Importing and Exporting Address Book
People and Groups



30
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Importing and Exporting Address Book People and Groups



This article contains important information for developers using Address Book’s C API. For the most
part, the Objective-C API has close method and syntax parity with the C API. This makes it easy to
determine, for example, which function corresponds to a given Objective-C method.

There are a couple of primary differences that Carbon developers need to be aware of when using
the Address Book C API:

 ■ The Carbon People Picker comes only in window form and does not have an API for setting an
accessory view. In addition, changes in selection and displayed properties are sent via Carbon
Events.

 ■ When creating an action plug-in using Carbon, your CFBundle must implement a function called
ABActionRegisterCallbacks, which will return an ABActionCallbacks structure. The structure
needs to be formed according to this type definition:

typedef struct {
//the version of this struct is 0
CFIndex version;

//A pointer to a function that returns the AddressBook
//property this action applies to.
ABActionPropertyCallback property;

//A pointer to a function that returns the AddressBook
//property this action applies to. Only items with labels
//may have actions at this time.
ABActionTitleCallback title;

// A pointer to a function which returns YES if the action
//should be enabled for the passed ABPersonRef and item
//identifier. The item identifier will be NULL for single value
//properties. This field may be NULL. Actions with NULL enabled
//callbacks will always be enabled.
ABActionEnabledCallback enabled;

//A pointer to a function which will be called when the user
//selects this action. It's passed an ABPersonRef and item
//identifier. The item identifier will be NULL for single
// value properties.
ABActionSelectedCallback selected;

} ABActionCallbacks

31
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Using Address Book from C



Otherwise, the Objective-C and C APIs act quite similar.

To access the user’s shared address book from Carbon, you need to set an ABAddressBookRef to the
return value of ABGetSharedAddressBook:

ABAddressBookRef addressBook = ABGetSharedAddressBook();

Compare this with the same line, but from a Cocoa Objective-C application:

ABAddressBook *addressBook = [ABAddressBook sharedAddressBook];

Notice the similarity in the method and function names. Most of the sample code in this document
is written in Objective-C, except where required to explain differences in the API. However, you can
see that the mapping between the two APIs is easy to follow.

Let’s take an example from "Searching an Address Book" (page 19). Listing 1 (page 32) searches for
anyone named Smith in the current user’s address book and returns an array of results:

Listing 1 Simple Search, in Objective-C

ABAddressBook *AB = [ABAddressBook sharedAddressBook];

ABSearchElement *nameIsSmith =
[ABPerson searchElementForProperty:kABLastNameProperty

label:nil
key:nil

value:@"Smith"
comparison:kABEqualCaseInsensitive];

NSArray *peopleFound =
[AB recordsMatchingSearchElement:nameIsSmith];

In Listing 2 (page 32) you see that very same code segment, but written using the C API:

Listing 2 Simple Search, in C

ABAddressBookRef AB = ABGetSharedAddressBook();

ABSearchElementRef nameIsSmith =
ABPersonCreateSearchElement(kABLastNameProperty,

NULL,
NULL,
CFSTR("Smith"),
kABEqualCaseInsensitive);

CFArrayRef peopleFound =
ABCreateArrayOfMatchingRecords(AB, nameIsSmith);

Look familiar? For more details about integrating the Address Book into your Carbon applications,
refer to Address Book Reference for C.

32
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Using Address Book from C



This table describes the changes to Address Book Programming Guide.

NotesDate

Made minor editorial corrections throughout.2006-04-04

Made minor sample code changes. Added important note about syncing
with Sync Services to the introduction.

2005-04-29

Added major updates. New sections include "Creating and Using Address
Book Action Plug-ins" (page 27), "Using the People Picker" (page 15), and
"Using Address Book from C" (page 31) for Carbon developers. Other
sections have new sample code and more detailed content.

2004-04-21

Made minor correction in "Search Examples" (page 20).2003-10-30

Added revision history, which records changes to the content of Address
Book.

2003-08-21

33
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Document Revision History



34
2006-04-04 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Document Revision History


	Address Book Programming Guide
	Contents
	Tables and Listings
	Introduction
	About the Address Book
	Basic Address Book Concepts
	Advanced Address Book Concepts

	Managing Address Book Records
	Accessing the Address Book
	Adding and Removing People and Groups
	Managing Groups
	Accessing the User’s Record
	Saving Your Changes
	An Example

	Accessing Address Book Records
	Using Property Lists
	Using Multivalue Lists
	Associating a Picture With a Person
	Getting Localized Names for Properties and Labels
	An Example
	Using the People Picker
	People Picker Example

	Searching an Address Book
	Creating a Search Element for a Single Property
	Creating a Search Element for Multiple Properties
	Finding Records that Match a Search Element
	Search Examples

	Using Address Book Groups as Distribution Lists
	Adding Properties to Address Book Records
	Creating and Using Address Book Action Plug-ins
	Importing and Exporting Address Book People and Groups
	Using Address Book from C
	Revision History


